HOME ABOUT BLOG CONTACT
A Primer of Lebesgue Integration

A PRIMER OF LEBESGUE INTEGRATION

by: Bear, H. S.
Format: Hardcover

price comparison

loading

Description

Product Description The Lebesgue integral is now standard for both applications and advanced mathematics. This books starts with a review of the familiar calculus integral and then constructs the Lebesgue integral from the ground up using the same ideas. A Primer of Lebesgue Integration has been used successfully both in the classroom and for individual study. Bear presents a clear and simple introduction for those intent on further study in higher mathematics. Additionally, this book serves as a refresher providing new insight for those in the field. The author writes with an engaging, commonsense style that appeals to readers at all levels. Review "This well-written little book provides ... an introduction to the Lebesgue integral. The book is written very clearly and suggestively and can be recommended to students." --Zentralblatt for Mathematik From the Back Cover This successful text offers a reader-friendly approach to Lebesgue integration. It is designed for advanced undergraduates, beginning graduate students, or advanced readers who may have forgotten one or two details from their real analysis courses. "The Lebesgue integral has been around for almost a century. Most authors prefer to blast through the preliminaries and get quickly to the more interesting results. This very efficient approach puts a great burden on the reader; all the words are there, but none of the music." Bear's goal is to proceed more slowly so the reader can develop some intuition about the subject. Many readers of the successful first edition would agree that he achieves this goal. The principal change in this edition is the simplified definition of the integral. The integral is defined either with upper and lower sums as in the calculus, or with Riemann sums, but using countable partitions of the domain into measurable sets. This one-shot approach works for bounded or unbounded functions and for sets of finite or infinite measure. The author's style is graceful and pleasant to read. The explanations are exceptionally clear. Someone looking for an introduction to Lebesgue integration could scarcely do better than this text. ?John Erdman Portland State University This is an excellent book. Several features make it unique. The author gets through the standard canon in only 150 pages and then arranges the material into easily digestible units (a proof hardly ever exceeds three-fourths of a page). The author writes with concision, clarity, and focus. ?Robert Burckel Kansas State University This text achieves its worthy goals. The author tends to the business at hand. The short chapter on Lebesgue integration is refreshing and easily understood. One can use a semester covering the book, and the students will be well-grounded in the basics and ready for any of a dozen possible second semesters. ?Joseph Diestel Kent State University|This successful text offers a reader-friendly approach to Lebesgue integration. It is designed for advanced undergraduates, beginning graduate students, or advanced readers who may have forgotten one or two details from their real analysis courses. "The Lebesgue integral has been around for almost a century. Most authors prefer to blast through the preliminaries and get quickly to the more interesting results. This very efficient approach puts a great burden on the reader; all the words are there, but none of the music." Bear's goal is to proceed more slowly so the reader can develop some intuition about the subject. Many readers of the successful first edition would agree that he achieves this goal. The principal change in this edition is the simplified definition of the integral. The integral is defined either with upper and lower sums as in the calculus, or with Riemann sums, but using countable partitions of the domain into measurable sets. This one-shot approach works for bounded or unbounded functions and for sets of finite or infinite measure. The author's style is graceful and pleasant to

Details

Product Code: 9780120839711
ISBN: 0120839717
Publisher: Academic Press
Publication Date: 2001-10-01
Number of Pages: 164 pages
Languages: english
Edition: 2
Dimension: 6.1 x 0.79 x 9.09 inches
Shipping Weight: 0.55 pounds